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Dr. Nikola K. Popov

Summary

This chapter covers the thermal-hydraulic design of nuclear power plants with a focus on the
primary and secondary sides of the nuclear steam supply system. This chapter covers the
following topics: evolution of the reactor thermal-hydraulic system; key design requirements for
the heat transport system; thermal-hydraulic design principles and margins; design details of
the primary and secondary heat transport systems; fundamentals of two-phase flow;
fundamentals of heat transfer and fluid flow in the reactor heat transport system; other related
topics.
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1 Introduction
Section 1 provides an introduction to thermal-hydraulic design. It defines the expectations and
learning outcomes for this chapter and indicates the relationship of this chapter to other
chapters in this textbook.

The objective of this chapter is to describe the generic thermal-hydraulic design of nuclear
reactors under normal operating conditions, with a specific focus on design details of CANDU
reactors.

This chapter covers the thermal-hydraulic design of a CANDU nuclear power reactor, with
general comparisons to other reactor types and designs. Thermal-hydraulic design covers the
reactor primary and secondary heat transport systems. In fact, the primary heat transfer
design defines the maximum power levels (globally and locally) that can be safely generated in
the reactor core and thus defines the design characteristics of many systems and components,
such as the reactor core physics and the fuel design.

1.1 Overview
This section describes the objectives, principles, and methodologies of reactor thermal-
hydraulic design. The thermal-hydraulic design of the reactor process systems that are
required to transport heat energy away from the nuclear reactor source and transform this
heat energy into useful work (generally electrical energy) are the focus of nuclear engineering
and of this chapter.

Section 2 presents the principles of reactor design, with a focus on CANDU reactor design.
Designs of other reactor types are described in Appendix A, in which the focus is on providing a
historical perspective on reactor thermal-hydraulic and systems design and on pressurized
water reactors (PWRs) and boiling water reactors (BWRs).

Section 3 covers the design evolution of the CANDU reactor, including a general description of
the overall design of the CANDU heat transport system and the design and evolution of the
main components such as primary pumps, steam generators, and the reactor core.

Section 4 defines the thermal-hydraulic design requirements, including fuel cladding (fuel
sheath), coolant, fuel, moderator materials, and control materials. Reactor core component
materials are discussed and component requirements assessed. This section also discusses
various fuel-coolant-moderator arrangements, their optimization, and their performance
within the reactor design. Advantages and disadvantages of all the variations are discussed and
possible solutions suggested. Finally, the section provides general requirements for the
thermal-hydraulic design process.

Section 5 discusses reactor thermal-hydraulic design limits from the perspective of various
reactor designs. It explains the concepts of reactor thermal margins and their application to
reactor design assessment. Reactor thermal margins are an important parameter in reactor
thermal-hydraulic design because they provide assurance that the heat generated by the fuel is
removed from the reactor core under all possible operating conditions.

Section 6 covers thermal-hydraulic design fundamentals. The first part of this section presents
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the fundamentals of single- and two-phase flow and heat transfer. Two-phase flow and heat
transfer present a number of thermal-hydraulic design challenges, which are explained and
discussed in this section. In addition, this section covers the thermodynamics of the reactor
primary and secondary heat transport systems. The concepts of thermodynamic laws and their
application to reactor design are presented. The concept of reactor thermodynamic efficiency
is defined and its application to reactor performance assessment explained. Various secondary
system designs are discussed, and a description of the secondary side components, such as
steam turbines, steam condensers, feedwater systems and pre-heaters, and feedwater pumps,
is provided.

Section 7 is the key section in this chapter because it describes the design of reactor heat
transfer and fluid flow. This section outlines primary heat transport system behaviour,
describes the various mathematical models, and discusses the most important characteristics
of the primary heat transport system. The design and operation of the primary pumps is
described. The design and operation of the steam generators is covered in detail because this
component connects the primary and secondary heat transport systems, and therefore
understanding its behaviour is essential for understanding overall reactor thermal-hydraulic
behaviour. Flow stability in single-channel and parallel-channel instability situations is
explained and its relevance to reactor and pump operation presented.

Also presented in Section 7 are heat transfer in the fuel elements and their heat transfer
behaviour and operation in the reactor. Various topics are covered, such as fuel pellet cladding
gap heat conduction, variability of heat conductivity in the fuel with temperature, and the
influence of other important parameters. Fluid flow fundamentals are also covered, including
calculation of pressure drop in the primary heat transport system under single- and two-phase
operating conditions, calculation of flow resistance and its impact, and other important
aspects.

Heat transfer between fuel and coolant is also discussed in Section 7, including heat transfer
regimes in single-phase and two-phase operation, with a particular focus on boiling heat
transfer in a CANDU fuel channel. The concept of critical heat flux is defined and discussed,
along with various critical heat flux approaches, experimental data, and prediction methods.
The impact of critical heat flux on reactor thermal margins is discussed and methods for
improvement identified. An important part of the critical heat flux prediction model is the
look-up table, which is explained and its application described. Part of this section is devoted
to post-critical heat flux heat transfer, i.e., transition boiling and film boiling. Various heat
transfer modes are discussed, with particular attention to CANDU fuel bundles. Most of the
important heat transfer correlations are listed and explained and their application discussed.

Finally, the last few sub-sections of Section 7 are devoted to special topics in reactor thermal-
hydraulic design. One section explains the critical flow phenomenon and its relevance to safety
analysis, as well as the water hammer phenomenon. It provides insights on the risk from the
water hammer hazard and provides high-level information on preventing this phenomenon in
reactor design.

The last part of Section 7 covers natural circulation, which is an important phenomenon
because it provides assurance that reactor decay heat will be removed from the core if forced-
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Figure 2 Typical CANDU plant

Figure 2 provides a schematic diagram of a typical CANDU heat transport system.

Figure 3a provides a detailed diagram of the CANDU 6 primary heat transport system (blue
solid lines) and the shutdown system (green dashed lines) [AECL1981]. Figure 3b provides a 3D
view of the CANDU 6 cooling system layout in the reactor building (the nuclear island)
[AECL2005].

A CANDU nuclear steam supply system’s power production process starts like that of any other
nuclear steam supply system, with controlled fission in the reactor core.
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a) CANDU 6 primary and shutdown cooling loops

b) CANDU 6 cooling loops in containment – 3D view

Figure 3 CANDU 6 reactor cooling loops



Thermal-Hydraulic Design 17

©UNENE, all rights reserved. For educational use only, no assumed liability. Thermal-Hydraulic Design – December 2015

2.1.1 Reactor core and calandria vessel

The core in a CANDU reactor is horizontal (Figure 4), with reactor channels in the core
containing the reactor fuel and heavy water coolant, whereas the heavy water moderator is in
the calandria vessel surrounding the reactor core [AECL2009a, AECL2010]. The reactor is made
up of a stainless-steel horizontal cylinder, the calandria, closed at each end by end shields that
support the horizontal fuel channels spanning the calandria and provide personnel shielding. In
the CANDU 6 design, the calandria is housed in and supported by a light water-filled, steel-lined
concrete structure, the reactor vault, which provides thermal shielding (Figure 5). In the
Darlington/Bruce CANDU reactor design, the calandria vessel is housed in a steel shield tank
assembly, which performs a similar function to the CANDU 6 calandria vault. The calandria
contains heavy water (D2O) moderator at low temperature and pressure, reactivity control
mechanisms, and several hundred fuel channels.

Figure 4a) Typical CANDU reactor and heat transport system

Figure 4b) Typical CANDU fuel channel
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Figure 4c) Typical CANDU fuel bundle

Figure 4 CANDU reactor, fuel channel, and fuel bundle

Neutrons produced by nuclear fission are moderated (slowed) by the D2O in the calandria. The
moderator D2O is circulated through systems that cool and purify it and control the
concentrations of the soluble neutron absorbers used to adjust reactivity.

The fuel channels are also shown in Figure 4c. Each fuel channel supports 12 fuel bundles in
the reactor core (13 in the Darlington/Bruce CANDU design). The fuel channel assembly
includes a zirconium alloy pressure tube, a zirconium calandria tube, stainless steel end-fittings
at each end, and four spacers that maintain separation of the pressure and calandria tubes.
Each pressure tube is thermally insulated from the cool, low-pressure moderator by the CO2-
filled gas annulus between the pressure tube and the concentric calandria tube.

The CANDU fuel bundle typically consists of 37 elements (although advanced 43-element
designs have been qualified, and 28-element designs are still in service at Pickering station)
arranged in circular rings, as shown in Figure 4c.

Figure 5 CANDU calandria vessel and reactor vault
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Each fuel element consists of natural uranium in the form of cylindrical pellets of sintered
uranium dioxide contained in a zircaloy-4 sheath closed at each end by an end cap. The fuel
elements are held together by end plates at each end to form the fuel bundle. The required
fuel element separation is maintained by spacers brazed to the fuel elements at the transverse
mid-plane. The outer fuel elements have bearing pads brazed to the outer surface to support
the fuel bundle in the pressure tube.

The CANDU reactor assembly, shown in Figure 5, includes the fuel channels contained in and
supported by the calandria. Each end shield consists of an inner and an outer tube sheet joined
by lattice tubes at each fuel channel location and a peripheral shell. The inner spaces of the
end shields are filled with steel balls and are light water-cooled. The fuel channels, supported
by the end shields, are located on a square lattice pitch. The calandria is filled with heavy
water moderator at low temperature and pressure.

2.1.2 Primary heat transport system design

The CANDU primary heat transport system consists of primary, secondary, and tertiary loops,
as shown in Figure 2 [AECL2009a]. There are several variations of the CANDU heat transport
system design, the latest being the Pickering, Bruce/Darlington, and CANDU 6 designs. The
CANDU 6 heat transport system design is described in the following sections.

The heat transport system (HTS) circulates pressurized D2O coolant through the fuel channels
to remove the heat produced by fission in the nuclear fuel. The coolant transports the heat to
steam generators, where it is transferred to light water to produce steam to drive the turbine.
Two HTS coolant loops (one in the Bruce design) are provided in CANDU reactors (Figure 6).
Each loop has one inlet and one outlet header, as well as one primary pump and one steam
generator at each end of the reactor core. D2O is fed to each fuel channel through individual
inlet feeder pipes from the inlet headers and is returned from each channel through individual
outlet feeder pipes to the outlet headers. Each heat transport system loop is arranged in a
“figure-of-eight”, with the coolant making two passes in opposite directions through the core
during each complete circuit and the pumps in each loop operating in series. The coolant flow
in adjacent fuel channels is in opposite directions.
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Figure 6 CANDU primary heat transport system

In most CANDU reactors, the pressure in the heat transport system is controlled by a
pressurizer connected to the outlet headers at one end of the reactor. Valves provide isolation
between the two loops and the pressurizer in the event of a loss-of-coolant accident.

Figure 6 provides a view of the “figure-of-eight” design of the CANDU heat transport system.
On the right side, this figure shows the CANDU heat transport system to scale, with all feeders
connected to the reactor core. Coolant is transported from the outlet headers to the steam
generator by a large steam generator inlet pipe. Primary coolant from the steam generator
outlet is transferred to the primary pump by means of a large pump suction pipe and from the
pump to the inlet header by means of large pump discharge pipes.

The main components of the reactor primary heat transport system, in addition to the reactor,
are the steam generators, primary pumps, connecting piping to each channel, distribution
headers, large piping connecting these to the pumps and the steam generators, and the
pressurizer. These components are described in the next few sections.

2.1.3 Steam generators

The CANDU steam generators consist of an inverted U-tube bundle within a cylindrical shell.
Heavy water coolant passes through the U-tubes [AECL2009a, AECL2010]. The steam
generators include an integral pre-heater on the secondary side of the U-tube outlet section
and integral steam-separating equipment in the steam drum above the U-tube bundle. A
typical steam generator structure is shown in Figure 7.
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Figure 7 Typical steam generator design Figure 8 Typical pressurizer design

Operation and design details and calculations for the steam generator are provided in Section
7.3. The steam generator plays an important role in reactor heat transport system operation
because it connects the reactor operation with the turbine-generator operation.

2.1.4 Pressurizer

The pressure in the reactor primary coolant system is maintained at a controlled level by a
pressurizer. Figure 8 shows a view of a typical pressurizer [AECL2009a, AECL2010]. The
pressurizer contains steam in the upper section of its cylinder and water in the lower section.
The pressurizer is connected to the primary loop through a surge nozzle at the bottom.
Heaters are provided at the bottom of the pressurizer internals, and a spray nozzle, relief
nozzle, and safety nozzle are installed at the top of the pressurizer head.

A “positive surge” of water from the primary loop because of increasing loop pressure is
compensated for by injecting cold water from the top of the pressurizer, which condenses the
steam in the upper portion and thus reduces system pressure.

A “negative surge” of water empties the pressurizer, reducing steam pressure at the top of the
pressurizer and thus loop pressure. In this situation, the electrical heaters at the bottom of the
pressurizer are automatically activated, converting a portion of the water into steam and
resulting in a loop pressure increase. By performing these sequences (i.e., creating steam when
the loop pressure is too low or decreasing steam when the loop pressure is too high), the
pressurizer maintains loop pressure within a certain design range and also ensures smooth
pressure changes in the primary loop.
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2.1.5 Primary pumps

The primary pumps used in the CANDU heat transport system are vertical, centrifugal motor-
driven pumps with a single suction and a double discharge [AECL2009a, AECL2010]. As shown
in Figure 9, the pump impeller is at the bottom of the pump, and the pump shaft extends
upward to the pump motor, passing through a number of pump seals and holding the pump
flywheel.

Figure 9 Typical primary pump design

Cooling of the reactor fuel in the event of electrical power supply interruption is maintained by
the rotational momentum of the heat transport pumps during reactor power rundown and by
natural convection flow after the pumps have stopped. More information on pump function,
design, and operation is provided in later sections of this chapter.

2.1.6 Primary heat transport piping

The CANDU reactor contains a relatively large number of pipes, called feeders, and manifolds,
called headers, in the primary heat transport system, which are used to distribute coolant to
the fuel channels in the core. Although these components have important functions and are
mentioned in this chapter, a detailed discussion is beyond the scope of this textbook. Note
that feeders are unique to reactor designs with fuel channels and provide a number of design
advantages, but are also vulnerable to certain types of accidents and aging effects, as
mentioned in other chapters.

2.1.7 Secondary heat transport system design

The NPP secondary heat transport system transfers the generated energy from the primary
closed circuit to the secondary, where the heat energy is transferred into mechanical energy of
rotation in the turbine and then into electrical energy by the electric generator. The main
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components of the secondary heat transport system are the steam turbine, condenser, heat
exchangers, feedwater pumps, valves, and piping; these are covered in the next few sections.

2.1.8 Turbine

The CANDU steam turbine is typically a tandem compound unit, directly coupled to an
electrical generator by a single shaft. It consists of one double-flow high-pressure cylinder
followed by external moisture separators, five steam reheaters, and three double-flow low-
pressure cylinders. The turbine is designed to operate with saturated inlet steam. The turbine
system includes main steam stop valves, governor valves, reheat intercept valves, and
emergency stop valves. All these valves close automatically in the event of a turbine protection
system trip.

In the following sections, more details are provided about turbine operation, efficiency, and
other relevant parameters.

2.1.9 Condenser

The turbine condenser consists of three separate shells. Each shell is connected to one of the
three low-pressure turbine exhausts. Steam from the turbine flows into the shell, where it is
condensed by flowing over a tube bundle assembly through which cooling water is pumped.
The condenser cooling water typically consists of a once-through circuit that uses water from
an ocean, lake, or river or is connected to cooling towers. The condensed steam collects in a
tank at the bottom of the condenser called the “hot well”. A vacuum system is provided to
remove air and other non-condensable gases from the condenser shell. The condenser is
designed to accept turbine bypass steam to permit reduction of reactor power from 100% to
70% if the turbine is unavailable.

2.1.10 Heat exchangers and pumps

On its return to the steam generators, condensate from the turbine condenser is pumped
through the feedwater heating system. Typically, it first passes through three low-pressure
feedwater heater units, each of which contains two heaters fed by independent regenerative
lines. (This arrangement permits maintenance work to be carried out on the heaters with only
a small effect on turbine generator output.) Two of the heater units incorporate drain cooling
sections and the third a separate drain cooling stage. Next, the feedwater enters a deaerator,
where dissolved oxygen is removed. From the deaerator, the feedwater is pumped to the
steam generators through two high-pressure feedwater heaters, each incorporating drain
cooling sections (see Figure 55).

Several stages of feedwater pumps are installed to raise the pressure from the condenser
pressure (vacuum) of 4–6 kPa to the steam generator pressure of 4.7 MPa. More information
on heat exchanger design and calculations is provided in later sections of this chapter.

2.2 Problems
1. Name and describe the function of the main components of the CANDU primary heat

transport system.
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2. Describe the main components of the pressurizer in a CANDU reactor, with a detailed
explanation of the method it uses to control the primary heat transport system
pressure.

3. Provide a detailed description of the steam generator function, with specific reference
to its role in the relationship between the primary and secondary heat transport
systems. Comment on the relationship of these systems with the overall size of the
steam generators.
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3 CANDU Thermal-Hydraulic Design Evolution
To obtain a better understanding of CANDU design concepts, one needs to understand how the
design has evolved over the past 50 years [AECL1978, AECL1997]. This section provides
information focussing on the reasons why certain evolutionary steps were taken and why
certain design solutions were abandoned, based on operating experience and on evolving
regulatory requirements. The design evolution is covered from two perspectives: general
evolution resulting from nuclear operating and regulatory experience around the world, and
CANDU-specific operating and regulatory experience in Canada.

3.1 CANDU reactor evolution
The evolution of the heat transport system is of primary importance in understanding the
evolution of power reactor technology. The primary heat transfer system contains the reactor
core and the fuel and is therefore an important link between the reactor thermal-hydraulics,
physics, and fuel.

The evolution of the heat transport system, which is described in this section, captures the
design evolution of the reactor core, the fuel and fuel channels in the CANDU reactor, the type
and number of primary heat transfer loops, and the primary pumps and steam generators.
Also covered are the evolution of the systems and components on the secondary side of the
heat transfer.

The CANDU design had its beginnings in the early 1950s, with preliminary engineering studies
on a 20 MWe and a 200 MWe plant [AECL1997]. The design concepts were based on
experimental confirmation at the ZEEP, NRX, and NRU experimental reactors at the AECL Chalk
River Laboratory facilities. These studies eventually culminated in commitments to the
construction of NPD and Douglas Point. NPD began operating in 1962 and Douglas Point in
1966. At the same time, commitments were made to construct Pickering in 1964 and Bruce in
1969. The 1970s witnessed the excellent operating performance of Pickering and Bruce and
further commitments to construct the Gentilly-2 (Quebec), Embalse (Cordoba, Argentina),
Point Lepreau (New Brunswick), Wolsong (Korea), Pickering B (Ontario), Bruce B (Ontario), and
Darlington (Ontario) plants.

In most cases, successive plants have meant an increase in reactor power output. Evolutionary
developments have been undertaken to fit the requirements of stricter safety goals, higher
ratings and sizes, new regulations, better reliability and maintainability, and lower costs. These
evolutionary changes have been introduced in the course of engineering parallel reactor
projects with overlapping construction schedules—circumstances which provide close contact
with the practical realities of economics, manufacturing, construction activities, and
performance in plant commissioning. Features for one project furnished alternative concepts
for other plants on the drawing board at that time, and the experience gained in first
application yielded a sound basis for re-use in succeeding projects. Thus, the experience
gained in NPD, Douglas Point, Gentilly-1, and KANUPP contributed to Pickering and Bruce. In
turn, all these plants contributed to the CANDU 6 design (i.e., Gentilly-2, Point Lepreau,
Wolsong, Cernavoda, Embalse, and Qinshan). The evolutionary changes that have taken place
are discussed in the following sections.
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Table 1 provides a general comparison of key design features of other reactor types with those
of CANDU [GAR1999, POP2014, POP2015]. Table 2 provides information on the evolution of
various key components in CANDU heat transport systems.

Table 1 Typical fuel characteristics for key reactor types

Characteristic BWR PWR AGR LMFBR CANDU

Moderator H2O H2O Graphite - D2O

Coolant H2O H2O CO2 Molten Salt D2O

Neutron Energy Thermal Thermal Thermal Fast Thermal

Fuel Enriched UO2 Enriched UO2 Enriched UO2 PuO2/UO2 Natural UO2

Fuel Geometry Cylindrical
pellet in clad

tube

Cylindrical pellet
in clad tube

Cylindrical pellet
in clad tube

Cylindrical pellet
in clad tube

Cylindrical pellet
in clad tube

Fuel Assembly Up to 10 x 10
rod array

Up to 17 x 17
rod array

Concentric
circles

Hexagonal rod
array

37-element fuel
bundles (typ.)

3.1.1 Primary heat transport system
The evolution of the CANDU design has involved a continuing quest for higher reliability, better
equipment maintainability, and reduced radiation doses to operating staff. This has been
manifested in a dramatic reduction in the number of components, as shown in Table 2. For
example, NPD had approximately 100 valves per MW in the nuclear steam supply system. This
was reduced to less than 1 valve per MW in the Bruce, Gentilly-2, and Darlington designs. In
addition, there are no valves in the large HTS main piping (past the Pickering design). The
number of steam generators has gone from 12 in Pickering, to 8 in Bruce, to 4 in the CANDU 6
and Darlington designs. Other evolutionary changes have included improvements in sub-
cooling margins, increased gross and channel flowrates, and increases in system pressure and
temperature. All materials in the heat transport circuit are now specified for very low levels of
cobalt to minimize radiation fields, thus improving CANDU radiation protection robustness.
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Table 2 CANDU main process parameters and features

Parameter Douglas Point Pickering Bruce/Darlington CANDU 6

Power Output MWe 210 515 750 / 850 700

Number of Channels 306 390 480 380

Number of Pumps 10 16 4 4

Pump Type Vertical
Centrifugal Single

Stage

Vertical
Centrifugal
Single Stage

Vertical Centrifugal
Single Stage

Vertical Centrifugal
Single Stage

Power per Pump kW 600 1170 > 8250 > 5250

Pump Code BPVC Sect. VIII BPVC Sect. VIII BPVC Sect. III Class 1 BPVC Sect. III Class
1

Pump Seismic
Classification

None None DBE Category ‘A’ DBE Category ‘A’

Number of Steam
Generators

80 12 4 or 8 4

SG Power MW/boiler 2.5 ~ 45 ~ 95 150

SG Material M-400 M-400 I-600 I-800

Number of SG Tubes 196 2600 > 4200 3550

3.1.2 Steam generators
Steam generator size has been generally limited by the industrial capability to produce the
generators. Figure 10 [GAR1999] shows the evolution of the steam generator in terms of its
size and power. The power of the Darlington steam generators is close to 800 MW. Current
CANDU 6 plant designs typically have four steam generators.

Monel was used as the tubing material for Douglas Point, RAPP, KANUPP, and Pickering. This
material has proven quite satisfactory for the non-boiling coolant conditions of those plants.
Inconel 600 was used in NPD and in Bruce. This is a more costly material than Monel; however,
its corrosion resistance in a boiling environment (as in Bruce) is much superior. Currently,
Incoloy 800 is used in all 600-MW class CANDU 6 operating reactors. This material is more or
less equal in most respects to Inconel 600, has greater resistance to intergranular attack, and is
somewhat lower in cost.


